Atomistry » Fluorine
Atomistry »
  Fluorine »
    Isotopes »
    Energy »
    Production »
    Application »
    PDB 16pk-1bw7 »
    PDB 1bwf-1dvy »
    PDB 1dvz-1fk9 »
    PDB 1fko-1h1d »
    PDB 1h2j-1j97 »
    PDB 1jdj-1mkd »
    PDB 1mmd-1o5f »
    PDB 1o5g-1q6m »
    PDB 1q6n-1rrx »
    PDB 1rw8-1uda »
    PDB 1udb-1w5y »
    PDB 1w6j-1xz1 »
    PDB 1xz3-1zzr »
    PDB 2a4z-2baq »
    PDB 2bcj-2dux »
    PDB 2duz-2fq6 »
    PDB 2fq9-2gtm »
    PDB 2gtn-2ihj »
    PDB 2ihk-2jxr »
    PDB 2k1q-2ogz »
    PDB 2oh4-2pdk »
    PDB 2pdl-2q94 »
    PDB 2q9p-2rbe »
    PDB 2rfn-2vfz »
    PDB 2vh0-2wbk »
    PDB 2weg-2x2f »
    PDB 2x2n-2y1w »
    PDB 2y1x-2z5z »
    PDB 2z78-3az8 »
    PDB 3b0q-3cct »
    PDB 3ccw-3d39 »
    PDB 3d3e-3du8 »
    PDB 3dv3-3ev4 »
    PDB 3ewh-3flq »
    PDB 3fls-3g70 »
    PDB 3g72-3gwv »
    PDB 3gww-3hkw »
    PDB 3hky-3ig6 »
    PDB 3igu-3jx2 »
    PDB 3jx3-3kql »
    PDB 3kqn-3l8s »
    PDB 3l8v-3lxp »
    PDB 3lz3-3n0n »
    PDB 3n2m-3nly »
    PDB 3nlz-3og7 »
    PDB 3ohh-3oyh »
    PDB 3oyj-3ppm »
    PDB 3pr2-3qpw »
    PDB 3qri-3rfu »
    PDB 3rgf-3s3o »
    PDB 3s9y-3sw6 »
    PDB 3sym-3u2c »
    PDB 3u2o-3uvq »
    PDB 3uxm-3vr9 »
    PDB 3vrb-3wv1 »
    PDB 3wyk-436d »
    PDB 460d-4az3 »
    PDB 4azy-4bjc »
    PDB 4bjk-4c61 »
    PDB 4c62-4cqe »
    PDB 4cqj-4dbn »
    PDB 4dbq-4e1v »
    PDB 4e28-4f60 »
    PDB 4f9m-4fv9 »
    PDB 4fvx-4gnk »
    PDB 4goa-4hvs »
    PDB 4hw7-4iiz »
    PDB 4ijh-4j0p »
    PDB 4j0t-4jp4 »
    PDB 4jps-4kbc »
    PDB 4kbi-4l3j »
    PDB 4l3l-4lud »
    PDB 4luv-4mm4 »
    PDB 4mm8-4nc5 »
    PDB 4ncg-4o15 »
    PDB 4o16-4okx »
    PDB 4olh-4p8y »
    PDB 4pa0-4q09 »
    PDB 4q0d-4qr6 »
    PDB 4qrc-4rv3 »
    PDB 4rv6-4u5c »
    PDB 4u7z-4uvx »
    PDB 4uwf-4wh9 »
    PDB 4whq-4x6h »
    PDB 4x7i-4xvd »
    PDB 4xxs-4ymn »
    PDB 4ymo-4zg7 »
    PDB 4zg9-4zzh »
    PDB 4zzi-5agz »
    PDB 5ah8-5avx »
    PDB 5avy-5btc »
    PDB 5btd-5cgd »
    PDB 5cgq-5ddd »
    PDB 5dde-5dxi »
    PDB 5dy7-5es1 »
    PDB 5ese-5fck »
    PDB 5fct-5g1a »
    PDB 5g3j-5he0 »
    PDB 5he1-5hsu »
    PDB 5hti-5idp »
    PDB 5iev-5j7g »
    PDB 5j7p-5jv1 »
    PDB 5jvz-5kml »
    PDB 5kmn-5lay »
    PDB 5laz-5lxd »
    PDB 5lyy-5mrm »
    PDB 5mrs-5nft »
    PDB 5nge-5o6b »
    PDB 5o6e-5ok2 »
    PDB 5okd-5p90 »
    PDB 5p91-5phg »
    PDB 5po9-5qbx »
    PDB 5qby-5qk6 »
    PDB 5qoq-5qtr »
    PDB 5qts-5rfn »
    PDB 5rgh-5t92 »
    PDB 5ta8-5tr6 »
    PDB 5trf-5uey »
    PDB 5ufo-5uu3 »
    PDB 5uuh-5vbm »
    PDB 5vbp-5vro »
    PDB 5vrp-5wcf »
    PDB 5wdy-5x8i »
    PDB 5xa8-5y25 »
    PDB 5y2f-5z3u »
    PDB 5z3v-6afl »
    PDB 6afr-6b2b »
    PDB 6b2c-6bg3 »
    PDB 6bg5-6bxh »
    PDB 6bxy-6cpw »
    PDB 6cq4-6d1f »
    PDB 6d1z-6djz »
    PDB 6dkb-6e41 »
    PDB 6e4w-6el5 »
    PDB 6el6-6fe0 »
    PDB 6fe1-6fyz »
    PDB 6fz4-6goo »
    PDB 6gou-6hay »
    PDB 6hcu-6ho2 »
    PDB 6ho3-6ic6 »
    PDB 6iik-6jt3 »
    PDB 6jt4-6kvp »
    PDB 6kvq-6mpd »
    PDB 6mq6-6n83 »
    PDB 6nad-6ngy »
    PDB 6ngz-6nvi »
    PDB 6nvj-6ode »
    PDB 6oe3-6os8 »
    PDB 6otz-6pc7 »
    PDB 6pcs-6pma »
    PDB 6pmb-6qei »
    PDB 6qej-6qod »
    PDB 6qop-6rh0 »
    PDB 6rhl-6rv4 »
    PDB 6rwm-6t00 »
    PDB 6t5b-6u65 »
    PDB 6u6a-6uz0 »
    PDB 6v0x-6vny »
    PDB 6vqf-6ygp »
    PDB 6ygs-7gch »

Element Fluorine, F, Halogene

About Fluorine

To the group of halogen elements there must also be added the element fluorine, which differs in its properties more widely from the other three than these from one another. It exhibits, however, still fewer relationships with the rest of the elements, and is, therefore, most suitably classed along with the halogens.

Fluorine has the combining weight 19, which is smaller than that of the other halogens. The relation which is found here, that the element with the smallest combining weight shows less similarity to the related elements than the elements of higher combining weight to one another, is repeatedly found. Reference will, therefore, be made to this again on other occasions.

Fluorine is not found free in nature any more than the other halogens. To a still higher degree than these, it has the tendency to combine with other elements. This property is so marked that until a few years ago it was quite unknown in the free state.

Compounds of fluorine are fairly widely distributed in nature. It occurs in small quantity in many rocks, and its calcium compound, fluorspar, is a very abundant mineral. The total amount of fluorine, however, in the earth's crust accessible to us is considerably less than that of chlorine.

Fluorine History

Fluorine in the form of fluorspar also called fluorite CaF2, was described in the end of 15th century. Karl Wilhelm Scheele would experiment with hydrofluoric acid, easily obtained by treating calcium fluoride (fluorspar) with concentrated sulfuric acid. In 1886, elemental fluorine was isolated by Henri Moissan by electrolysis of liquid anhydrous mixture of hydrogen fluoride with small amount of potassium fluoride.

In Russian and some other languages fluorine is called "phthoros". This name, derived from Greek φθορος (disrupting, wrecking, decay), was proposed by Andre Ampere in 1810. The English fluorine comes from Latin fluere, meaning "to flow", and the name which reflects the early use of fluorite CaF2 as a flux, to lessen the temperature of ore melting and to increase its fluidity.

The fluorine chemistry had been developed since 1930-s, especially during the World War 2 and after it in connection with growing demands of nuclear industry and rocket technology.

Fluorine Occurrence

The average crustal abundance (clarke) of fluorine is 6.25x10-2 mass %. In acid igneous rocks (granites) it reaches 8x10-2 %, in basic igneous rocks (example basalt) it equals 3.7x10-2 %, and in ultrabasic - 1x10-2 %. Fluorite is abundant in volcanic rocks and thermal waters. The most important compounds are fluorite, cryolite and topaz. In total 86 fluorine-containing minerals are known. Fluorine compounds are also found in apatites, phosphorites etc. At the same time fluorite is very important biogenic element. The main sources which provide biosphere with fluorine are volcano eruptions.

Average content of fluorine in soil is 0.02%.

Each litre of sea water contains 0.3 mg of fluorine, and 20 times of that amount is found in oyster shells. Millions of tons of fluorides are found in coral reefs. Crustal abundance of fluorite is in average 200 times of those in living organisms.

Fluorine is a permanent trace constituent of living organisms. Significant quantities of it may be found as inorganic compounds in bones and, especially, in teeth. Sea creatures' bones are enriched with fluorine. Drinking water is the main source of fluorine in human and animals bodies. The optimal amount in water is 1-1.5 mg/l. Lack of fluorine in human body leads to teeth decay (caries). Dental fluorosis occurs because of the excessive intake of fluorine. High concentrations of fluorine ions are dangerous because of their ability to inhibit enzymatic reactions and to bind some biologically important elements, such as phosphorus, calciumalcium, magnesium, etc., creating their imbalance in organism. Organic fluorine compounds are found only in some plants, for instance, in South African Dichapetalum cymosum. The main organic compounds are fluoroacetic acid derivatives, very toxic for other plants as well as for animals.

The exploration of biological role of fluorine is still incomplete. The importance of fluorine metabolism in creation of bone tissue and teeth is confirmed. The necessity of this element for plants is not proved.

Neighbours

Last articles

Xe in 6AYK
Xe in 6QII
Xe in 6ASM
Xe in 5NSW
Xe in 6FY9
Xe in 5O1K
Xe in 5O27
Xe in 5M69
Xe in 5KPU
Xe in 5I63
© Copyright 2008-2020 by atomistry.com
Home   |    Site Map   |    Copyright   |    Contact us   |    Privacy